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The impacts of storing solar energy in the home to
reduce reliance on the utility
Robert L. Fares* and Michael E. Webber

There has been growing interest in using energy storage to capture solar energy for later use in the home to reduce reliance on
the traditional utility. However, few studies have critically assessed the trade-o�s associated with storing solar energy rather
than sending it to the utility grid, as is typically done today. Herewe show that a typical battery system could reduce peak power
demand by 8–32% and reduce peak power injections by 5–42%, depending on how it operates. However, storage ine�ciencies
increase annual energy consumption by 324–591 kWh per household on average. Furthermore, storage operation indirectly
increases emissions by 153–303 kg CO2, 0.03–0.20 kg SO2 and 0.04–0.26 kg NOx per Texas household annually. Thus, home
energy storage would not automatically reduce emissions or energy consumption unless it directly enables renewable energy.

In recent years, there has been growing interest in storing energy
produced from rooftop photovoltaic panels in a home battery
system to minimize reliance on the electric utility1. A number

of vendors have sought to capture this emerging market, including
electric vehicle market leader Tesla and German home energy
storage provider Sonnenbatterie2,3. Notably, Tesla has partnered
with Green Mountain Power, one of the largest electric providers
in the state of Vermont, to offer home storage to its customers;
and Sonnenbatterie has partnered with Sungevity, the largest private
solar company in the United States4,5.

While there is a growing market for home energy storage for
rooftop solar panels, storage is not strictly required to integrate
rooftop photovoltaic systems with the grid. A study on the impacts
of rooftop photovoltaic panels in California found that even at 100%
penetration (measured as the ratio between nameplate capacity and
peak system demand), the utility Pacific Gas and Electric (PG&E)
could maintain adequate voltage levels in its system by increasing
the number of transformer tap changing operations at a cost of
US$442,000 annually—or 0.007% of its US$6 billion annual opera-
tion and maintenance budget6,7. These findings align with previous
findings on the impact of high photovoltaic penetration in distribu-
tion circuits in California8. Furthermore, a number of studies have
shown that upgrading conductors, upgrading the transformer, or
incorporating ‘smart’ photovoltaic inverter control could be used
in lieu of storage to maintain adequate system voltage9–14. Even if
energy storage were needed to integrate rooftop solar panels, it is
not clear that it would have to be installed at the household level.

Despite the fact that energy storage is rarely required to integrate
rooftop solar panels, there is significant interest in capturing on-
site solar generation to minimize reliance on the electricity utility
and injections of solar energy to the grid. This application has
been studied extensively in the literature15–21, and it is the primary
value proposition offered to residential customers by home energy
storage vendors2,3,22.

While a number of studies have assessed the benefits of energy
storage that captures rooftop solar energy to mitigate overvoltage
in the distribution grid and hedge utility tariffs20,23,24, the amount
of energy consumed by the battery during operation and the
corresponding emissions footprint is typically neglected. One
notable exception is a 2013 study that found lead-acid batteries

used with solar panels in the UK would increase both primary
energy consumption and carbon dioxide emissions25.

In this paper we critically assess the trade-offs of using lithium-
ion battery storage to capture solar energy andminimize reliance on
the utility. We build on previous work by using measured electricity
use and production data from 99 Texas households to understand
how adding energy storage would impact power demand, energy
consumption, electricity service costs, and emissions of CO2, SO2
andNOx from the electricity system.We consider two different stor-
age operationmodels and compare their impacts.We also perform a
sensitivity analysis considering various storage efficiencies, storage
energy capacities, and storage power capacities to understand the
impact of energy storage under different scenarios.

Energy storage systemmodel
The energy storage application considered in this paper is minimiz-
ing the interaction between a household and the utility by minimiz-
ing power draws fromand injections to the utility grid for the benefit
of the electricity customer in terms of increased solar energy self-
consumption, independence from the utility, and reduced sensitivity
to grid outages. This application has been studied extensively in the
literature, and is the primary value proposition offered to residential
customers by home energy storage vendors2,3,15–20,22.

We utilize electricity data directly measured from 99 Texas
households over calendar year 2014 to reveal how home storage
would operate with solar panels to minimize reliance on the
utility. These data track electricity use and solar production with
a one-minute time resolution, allowing us to reveal how storage
could respond to short-duration power fluctuations. The data were
collected on a voluntary basis by the non-profit entity Pecan Street
and are freely available to university researchers through an online
portal26. Summary statistics for the 99 households in the sample are
provided in Supplementary Table 1.

We model home energy storage operation using two different
methods: a ‘target zero’ approach where the battery does not have
information about the future level of solar generation or electricity
demand and seeks to reduce injections to and demand from the
grid to zero at all times; and a ‘minimize power’ approach where
the battery system has perfect information about the future level of
electricity demand and solar generation over the day, and plans its
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Figure 1 | Storage operation model control logic and sample outputs. a, The ‘target zero’ method steps from one minute to the next with no foresight of
future electricity demand or solar generation, and seeks to set net grid demand to zero whenever possible without violating the battery’s energy and power
constraints. b, The ‘minimize power’ method has perfect day-ahead foresight of electricity demand and solar generation, and uses an optimization program
to minimize the sum of squares of net grid demand over the entire day. Sample outputs for each method are shown below the flowcharts, with storage
discharging given a negative sign and storage charging given a positive sign.

operation to minimize the sum of the squares of net power demand
from the utility over the entire day. Besides the level of foresight, the
primary distinction between these two methods is that ‘target zero’
seeks tomaximize the number of hours during which the household
is completely independent from the grid, while ‘minimize power’
seeks to minimize the magnitude of grid power demand over every
minute of the day with equal weights placed on each minute, so that
the household is resilient to a grid outage regardless of when it occ-
urs. Furthermore, the ‘target zero’ mode restricts the battery system
to charge only with solar power, while the ‘minimize power’ mode
allows the battery to charge with grid or solar electricity tominimize
demand over the day. Figure 1 illustrates the control logic of each
operational method and shows sample outputs for one household.

These two operational methods were selected because they
represent plausible yet distinct methods for storing solar energy in
the home to reduce reliance on the utility. ‘Target zero’ prioritizes
being as independent as possible during the current minute, while
‘minimize power’ prioritizes being as independent as possible over
the entire day. By considering these two plausible yet distinct
operational strategies, we can show the range of impacts that would
be expected for storage systems that operate somewhere between the
no foresight and perfect foresight extremes represented by ‘target
zero’ and ‘minimize power,’ respectively.

Note that both of these operational modes take a customer-
centric perspective that seeks to minimize interaction with the

utility as much as possible. Neither operational method explic-
itly considers other grid-level services that could be offered by
distributed energy storage or the potential economic benefits of
those services. While we are aware of the fact that the methods
of storage operation selected are not optimal from a purely eco-
nomic or system perspective, our objective is to assess the spe-
cific impacts of storing solar energy in the home to minimize
reliance on the utility, because this application is the primary value
proposition offered to residential customers by storage vendors2,3,22.
The details of each of these operational models are provided in
the Methods.

For both operational models, three parameters define the home
energy storage system: its power capacity (P rated) in kilowatts, its
energy capacity (Erated) in kilowatt hours, and its roundtrip (a.c. to
a.c.) energy efficiency (ηrt). For the base case battery system consid-
ered, we set these parameters equal to P rated = 3.3 kW, Erated = 7 kWh
and ηrt = 85%, corresponding to the parameters announced for
a common home battery system for daily cycle applications3. We
also consider a range of power capacities P rated = 1–7 kW, energy
capacitiesErated =1–7 kWh, and roundtrip efficiencies ηrt =70–100%
in our sensitivity analysis, as discussed in Supplementary Note 1.

Power demand and energy consumption impacts
Figure 2 illustrates the effect that home energy storage has on the
aggregate net power demand (electric load minus solar generation)
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Figure 2 | Aggregate power demand impact of adding energy storage.
Energy storage reduces the magnitude of power flows in the local utility
grid by storing produced solar energy for later use in the home. When
storage operates under the ‘target zero’ mode (shown in blue) with no
foresight of future electricity demand or solar generation, it reduces the
maximum aggregate power demand for the 99 households by 8% and the
maximum magnitude of reverse power flows by 5%. When storage
operates under the ‘minimize power’ mode (shown in red) with perfect
foresight, it reduces peak power demand by 32% and reduces the
maximum magnitude of reverse power flows by 42%.

for the 99 households considered. When home energy storage
operates according to the ‘target zero’ mode, the aggregate peak
demand is reduced by 29 kW or 8% from a value of 378 kWwithout
storage to a value of 349 kW with storage. Under the ‘minimize
power’ operating mode, energy storage reduces the level of peak
demand by 121 kW or 32%. Likewise, the maximum magnitude
of reverse power flows is reduced by 17 kW or 5% when storage
operates in the ‘target zero’ mode versus 158 kW or 42% when
storage operates in the ‘minimize power’mode. The results shown in
Fig. 2 are for the base case battery system considered (P rated = 3.3 kW,
Erated = 7 kWh and ηrt = 85%). Supplementary Figs 6–8 show how
changing the power capacity, energy capacity, and efficiency of the
storage systems affects their ability to reduce aggregate peak demand
and injections.

The change in aggregate power demand is an important metric
for the utility, which must size distribution equipment to meet
the expected maximum magnitude of net electricity demand.
However, residential electricity customers are not typically billed
for their demand in kilowatts, but rather for their cumulative
energy consumption in kilowatt hours. Thus, we consider the energy
consumption impact of home storage on a customer-by-customer
basis. Figure 3 illustrates the change in annual energy consumption
from the addition of storage for each of the 99 households when
it is operated under the two operating modes considered. Because
home energy storage consumes some energy every time it charges
and discharges, annual energy consumption increases for every
household. The mean increase in annual energy use across the 99
households is 338 kWh when storage operates in the ‘target zero’
mode and 572 kWh when storage operates in the ‘minimize power’
mode, illustrated by the dashed vertical lines in Fig. 3. This increase
is equal to 8%and 14%, respectively, of the average annual net energy
consumption of sampled households. We compute 95% confidence
intervals for the corresponding population means using a Student’s
t-test, resulting in an estimated mean additional annual energy
consumption of 338 ± 14 kWh under the ‘target zero’ operating
scenario and 572 ± 19 kWh under the ‘minimize power’ operating
scenario. Supplementary Figs 9–11 show how changing the power
capacity, energy capacity, and efficiency of the storage system
considered affects the mean increase in energy consumption. Note
that the average increase in energy consumption caused by adding
storage is small compared with the average decrease from adding
solar panels in the first place, as discussed in Supplementary Note 2
and illustrated in Supplementary Fig. 32. Thus, energy storage that
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Figure 3 | Energy consumption impact of adding energy storage. The
increase in energy consumption observed across the 99-household sample
is shown using a histogram. The dashed lines indicate the mean increase
across the sample, and the shaded areas indicate 95% confidence intervals
of the expected mean across all households computed using a Student’s
t-test. The average additional energy consumption caused by home energy
storage is 338± 14 kWh under the ‘target zero’ operating scenario and
572± 19 kWh under the ‘minimize power’ operating scenario.

directly enables rooftop photovoltaic panels could lead to a decrease
in net household energy consumption, although energy storage is
typically not required6–8.

Economic impacts
In addition to the impact that home energy storage would have on
electricity demand and consumption, we also consider the impact
that storage used to isolate customers from the utility and increase
solar self-consumption would have on the cost of electricity service
to the customer. Note that we did not explicitly consider a particular
utility tariff structure when selecting the objective function for
storage operational management, because our goal is to show the
economic impact of storage used to isolate a customer with solar
panels from the utility without binding storage operation to a
particular utility’s tariff.We consider the economic impact of storage
used in Austin, Texas (where the home electricity data used in
this paper were collected), other areas of Texas, and the states of
Hawaii and California, which have seen a significant penetration of
rooftop solar panels and are strong candidates for early home energy
storage deployments.

Table 1 shows the average annual customer benefit and present
value calculated across our 99-household sample for the base case
3.3 kW, 7 kWh, 85% efficient energy storage system considered.
Results are shown for seven different Texas utility tariffs27–37, as well
as four Hawaiian Electric Company (HECO) tariffs38–42 and three
California tariffs43–48. Note that Hawaii and California are shown
only for illustration, as storage that operates in these regions would
see different patterns of electricity use and generation than those
observed from our sample of Texas households. For each tariff, the
approximate consumption tariff and feed-in tariff are shown in US
cents per kilowatt hour. These approximate values are based on the
average monthly consumption and productionmeasured across our
sample. The values shown for the average annual customer benefit
and present value are calculated on the basis of each household’s pre-
cisemonthly electricity use and each utility’s precise tariff structures,
which typically include volumetric tiered rates, seasonal rates, and
other subtleties that would be difficult to summarize here. We refer
the reader to the citations provided for each tariff in Table 1.

In general, using storage to increase solar self-consumption pro-
vides a financial benefit when the consumption tariff is higher
than the feed-in tariff. The maximum present value that could
be realized in Texas is US$95 kWh−1 of storage capacity. If Tex-
ans were exposed to Maui’s electric rates, the maximum would
increase to US$287 kWh−1. The minimum present value obs-
erved under Texas electricity tariffs is −US$60 kWh−1. If Tex-
ans were exposed to California’s electric rates, the minimum
would fall to −US$143 kWh−1. The installed cost of a lithium-
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Table 1 | Economic impacts of adding energy storage.

‘Target zero’ ‘Minimize power’

Electric utility Tari� name Approximate
consumption
tari�
(US¢¢¢ kWh−1)

Approximate
feed-in tari�
(US¢¢¢ kWh−1)

Average
annual
benefit
(US$ yr−1)

Ten-year
present value
(US$ kWh−1)

Average
annual
benefit
(US$ yr−1)

Ten-year
present value
(US$ kWh−1)

Austin Energy Value of Solar27,28 9.0 10.9 −31 −32 −57 −58
San Antonio− CPS Energy Net Energy Metering29,30 9.8 9.8 −27 −27 −49 −50
MP2 Energy + Oncor Net Energy Metering31–33 10.1 10.1 −34 −35 −58 −60
MP2 Energy + Oncor Net Energy Buyback33,34 8 3.6 78 80 57 58
MP2 Energy + Centerpoint Net Energy Buyback33,34 8.8 3.6 93 95 70 72
TXU Energy + Oncor Clean Energy Credit33,35,36 11.4 7.5 50 51 24 25
TXU Energy + Centerpoint Clean Energy Credit33,35,37 9.9 7.5 21 21 −1.9 −1.9
HECO− Hawaii/Oahu Customer Grid Supply38,39 22.4 15.1 107 110 58 59
HECO−Maui Customer Grid Supply38,40 33.8 17.16 280 287 207 212
HECO−Molokai Customer Grid Supply38,41 39.0 24.07 251 258 165 169
HECO− Lanai Customer Grid Supply38,42 43.4 27.88 233 239 140 143
California− PG&E Net Energy Metering43,44 28.1 28.1 −72 −74 −140 −143
California− SDG&E Net Energy Metering45,46 27.9 27.9 −71 −73 −139 −143
California− SCE Net Energy Metering47,48 20.9 20.9 −55 −57 −105 −107
We use utility tari�s from Texas, Hawaii and California to show how storage operating as described in this paper would a�ect the cost of electricity service to customers. Note that the Hawaii and
California cases are shown only for illustration, because storage would see di�erent load and generation profiles than those observed from our sample of Texas households. The installed price of a home
energy storage system would have to fall below US$100 kWh−1 to provide a benefit under current Texas electricity tari�s.

ion battery system used for residential applications ranges from
approximately US$700–US$1,800 kWh−1 of storage capacity, where
US$700 kWh−1 represents a low cost estimate for a market-leading
storage vendor in 2016 and US$1,800 kWh−1 represents the high
cost estimate reported to the US Department of Energy in 2013 for
its Energy Storage Handbook49,50. Thus, under no scenario consid-
ered here could storage provide sufficient direct economic benefit to
the customer to offset its upfront cost. The installed pricewould have
to fall below US$100 kWh−1 of storage capacity to provide a benefit
under current Texas electricity tariffs. Details of the economic cal-
culations carried out to obtain the data given in Table 1 are provided
in theMethods. The complete range of customer benefits calculated
across our 99-household sample for each utility tariff is provided in
Supplementary Figs 14–27.

Electricity system emissions impacts
In addition to the impact that home energy storage has on electricity
demand and consumption, we also consider the indirect impact it
would have on electricity system emissions. As the households in
the data set are located in Texas, we use marginal emissions factors
calculated for the Texas electricity system from US Environmental
Protection Agency emissions monitoring data to approximate the
change in emissions associatedwith the hourly changes in electricity
demand caused by home energy storage51,52. These data report the
emissions in kilograms of CO2, SO2 and NOx per megawatt hour
of marginal change in electricity consumption at 5% quantiles of
fossil generation online measured in gigawatts. We use these data
to approximate marginal emissions factors for each hour of the
year by comparing them with the measured hourly level of fossil
generation in the Texas electricity system over 201453. The resulting
hourly marginal emissions factors are used to calculate how adding
home energy storage would impact annual emissions for each
household considered. The Methods discusses these calculations in
detail.Marginal emissions factors for the Texas electricity system are
provided in Supplementary Figs 28–31.

We find that the addition of energy storage to a household with
existing rooftop solar panels in the Texas electricity system would
increase annual emissions of CO2, SO2 and NOx for an average
household. When storage operates under the ‘target zero’ mode,
its mean emissions impact is 160 ± 7 kg CO2, 0.05 ± 0.02 kg SO2

and 0.05 ± 0.01 kg NOx per household per year. When storage
operates under the ‘minimize power’ mode its mean emissions
impact increases to 290 ± 13 kg CO2, 0.16 ± 0.04 kg SO2 and
0.24 ± 0.02 kg NOx per household per year. The complete range of
emissions impacts across the 99-household sample is illustrated in
Fig. 4. A sensitivity analysis of emissions impacts to energy storage
system parameters is provided in Fig. 5 and Supplementary Figs 12
and 13. Note that while adding storage to homes with existing solar
panels leads to an increase in emissions on average, the observed
increase is smaller than the average decrease in emissions caused by
adding solar panels in the first place, as discussed in Supplemen-
tary Note 2 and illustrated in Supplementary Figs 33–35. However,
energy storage is typically not required to integrate solar panels6–8.

The change in grid emissions from the addition of home battery
energy storage is caused by two separate factors: the additional
energy consumption required to cover storage inefficiencies, and the
fact that storage shifts electricity demand in time, and alters which
generators are used to provide energy not produced from rooftop
solar panels.

To gauge how much of the emissions impact of home energy
storage is caused by its energy consumption versus its temporal
impact on electricity demand, we test the sensitivity of the CO2, SO2
andNOx emissions impact to storage system a.c.–a.c. roundtrip effi-
ciency. The results of this analysis are illustrated in Fig. 5. The mean
emissions impacts calculated across our sample of 99 households are
illustrated by the solid lines, and 95% confidence intervals of the
corresponding population means are illustrated by the shaded areas
around each line. We also calculated the sensitivity of the emissions
impacts to the storage system’s power capacity and energy capacity.
These results are provided in Supplementary Figs 12 and 13.

Under the ‘target zero’ operating scenario, storage could reduce
SO2 and NOx emissions if its a.c.–a.c. roundtrip efficiency exceeds
90%. However, it could not reduce CO2 emissions unless its effi-
ciency approaches 100%. The sensitivity of emissions to energy
efficiency changes under the ‘minimize power’ operating scenario
because the battery charges and discharges at different times of
day. Under this operating scenario, storage could reduce SO2 emis-
sions if a.c.–a.c. roundtrip efficiency exceeds 95%, but it could not
reduce NOx emissions even if efficiency equals 100%, because it
shifts more energy production to natural gas combustion turbines.
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Figure 4 | Emissions impacts of adding energy storage. a–c, The change in
electricity system CO2 (a), SO2 (b) and NOx (c) emissions observed across
the 99-household sample shown using histograms. The dashed lines
indicate the mean impacts observed across the sample, and the shaded
areas indicate 95% confidence intervals of the expected mean across all
households computed using a Student’s t-test.

For reference, reported a.c.–a.c. roundtrip efficiencies from Li-ion
energy storage vendors range from 80–93%, although these esti-
mates might be optimistic because they are reported values and
not measured from the field49. A roundtrip efficiency exceeding
90% would be difficult to achieve due to losses in the battery
pack itself, additional losses in the power conditioning system that
converts the battery’s d.c. electricity into a.c. electricity suitable for
the grid, and supplemental energy required for thermal controls
to maintain an acceptable battery pack temperature. Thus, adding
home energy storage to households with existing photovoltaic pan-
els in Texas would most likely lead to an increase in CO2, SO2 and
NOx emissions .

Discussion and conclusions
Our findings on the power demand impact of home energy storage
show that it could be a useful tool to reduce the magnitude of power
flows in the utility grid. This reduction would benefit the utility in
two ways: it would reduce the required capacity of electric delivery
equipment such as substations and transformers54, and it would
reduce the need for new generation capacity to reliably meet peak
electricity demand55. These benefits are greater when home energy
storage operates in a way that minimizes the magnitude of house-
holds’ individual power flows (our ‘minimize power’ scenario) ver-
sus when home energy storage operates in a way that seeks to reduce
power flows between the household and the utility to zero whenever
possible (our ‘target zero’ scenario). Note that these benefits arise
even though storage operates from a customer-centric perspective
that seeks to minimize customers’ reliance on the electric utility. If
storage operated to explicitly benefit the utility without trying to
isolate customers, there would be a greater benefit to the utility.

While home energy storage is a useful tool to reduce power
flows in the distribution system, our findings indicate that it would
increase net energy consumption due to energy storage inefficien-
cies. Under common net-metering tariffs, which credit customers

for solar energy at a rate equal to the rate charged for energy
consumption, the increase in energy consumption from storage
leads to an increase in customers’ utility bills, as shown in Table 1.
However, in areas where the tariff charged for consumption is higher
than the feed-in tariff for solar energy, the addition of storage can
provide an economic benefit to the customer, despite the fact that
it leads to higher consumption overall. These instances mirror the
current situation in Germany, where the feed-in tariff decreased in
2012 below the rate charged for electricity consumption, creating
an incentive for home storage23. Under current Texas utility tariffs,
the base case energy storage system has a maximum present value
of US$95 kWh−1 for a typical household. This value is much lower
than the current installed cost of a home energy storage system
(US$700–US$1,800 kWh−1 of storage capacity49,50), so storage could
not provide a direct economic benefit to Texas customers under
current tariffs. It is worth noting that the customer benefit of adding
energy storage was found to be higher when it operates according to
the ‘target zero’ approach, even though this approach provides less
benefit to the utility in terms of reduced power demand and injec-
tions. This finding indicates that itmight be useful for utilities to ins-
titute demand charges for residential customers with energy storage
to explicitly incentivize reducing power demand and injections.

Because energy storage decreases kilowatt power flows in the
utility grid but increases kilowatt hour sales of electric energy, it
would be in the utility’s interest for consumers with solar panels to
install home storage. While adding storage does reduce a customer’s
reliance on the utility, previous analysis has shown that mass
defection from the utility is unlikely due to the high cost required
for sufficient photovoltaic panels and battery storage to be 100%
independent, and the advantages of an interconnected grid that can
balance customers’ generation with demand and enable customer-
producers to sell excess electric energy56. Thus, it is possible that
energy storage could provide a solution to the disruption of utility
business models with rising use of distributed generation57. Future
work should investigate the potential for energy storage to benefit
utilities in this way.

Our findings on the emissions impact of adding energy storage
to Texas households with existing photovoltaic panels indicate that
it would increase overall electricity system CO2, SO2 and NOx
emissions due to time-shifting of electric demand and the additional
electric energy required to cover storage system inefficiencies.
Changing the local electricity generation mix would alter the
emissions impact of home energy storage, but it is unlikely that
storage could decrease emissions unless it directly enables new
installation of non-emitting generators or enables production from
non-emitting sources that otherwise would have been curtailed.
This finding aligns with previous work that has examined the
system impacts of bulk electricity storage used for price arbitrage
in wholesale electricity markets58.

While rooftop photovoltaic systems deployed on the US grid
today do not require home energy storage, there are limited in-
stances where storagemight enable wider use of photovoltaic panels.
For example, in October 2015 the Public Utilities Commission of
Hawaii ended its net-energy metering programme due to concerns
about the impact of growing use of rooftop solar panels on electric
grid operations and utility rates59. The net-metering tariff was re-
placed with a ‘self-supply’ tariff for customers that use all of their
produced solar energy on site, and a ‘grid-supply’ tariff that pays a
price lower than the retail electric price for energy sent to the grid
from solar panels59. There is no limit to the number of customers
that can install solar panels under the self-supply tariff, but instal-
lations under the grid-supply tariff are capped59. Thus, for the case
of Hawaii, home storage could enable more customers to connect
solar panels under the self-supply tariff, and indirectly decrease
electricity system emissions. However, it is worth noting that the
rule change inHawaii was driven by both technical issues associated
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Figure 5 | Sensitivity of emissions impacts to storage roundtrip e�ciency. We test the sensitivity of the CO2, SO2 and NOx emissions impact of home
energy storage versus its roundtrip e�ciency by repeating our analysis for values of roundtrip energy e�ciency ηrt ranging from 70–100%. The solid lines
are the mean emissions impacts observed across the 99-household sample, and the shaded areas are 95% confidence intervals calculated for the
corresponding population means.

with integrating solar panels and economic solvency issues related
to net-metering tariffs. Further, Hawaii is a unique case where
high electricity prices, exceptional solar resources, and a progressive
energy policy make rooftop solar very attractive to consumers, yet
the islands’ small grid and isolation from the mainland exacerbate
integration challenges9.

In the future, regulators, policymakers and other decision-
makers should seek to evaluate the impacts of energy storage sep-
arately from the impacts of photovoltaic panels or other renewable
energy sources. Because energy storage is an energy consumer
and not a producer, it would most likely not reduce emissions or
primary energy consumption unless it directly enables intermittent
renewable energy. It would be useful for future research to assess
the cost-emissions trade-off associated with using energy storage to
integrate intermittent renewable resources versus other sources of
flexibility such as dispatchable generation, transformer tap-change
operations, advanced inverters, controllable loads, and other sources
of power and voltage control.

Methods
Summary. This paper approximates the impacts of home energy storage using a
sequence of five steps. First, electricity use and solar production data for a
particular household are downloaded from Pecan Street’s Dataport website26.
Second, the data are entered into a program that plans the operation of home
energy storage based on the observed level of electric load and solar generation.
Third, the revealed charging and discharging behaviour of home energy storage is
used to calculate its impact on electrical power demand and energy consumption.
Fourth, electricity tariffs from Texas, Hawaii and California are used to calculate
the economic impact of home energy storage. Fifth, a data set of marginal
emissions factors for the Texas electricity system is used to approximate the
emissions impact of adding home energy storage51,52. The following subsections
explain the methods associated with each of these steps in detail.

Electricity use and production data. To show how energy storage could respond
to a household’s electricity consumption and solar production to minimize
interaction with the utility, we use electricity data collected by Pecan Street from
residential electricity customers26,60. Each of the customers provides their data to
Pecan Street on a voluntary basis. Many of the participants in the data collection
programme are knowledgable about energy and take active steps to reduce their
energy use and environmental impact. Previous analysis of the study participants
revealed a negative correlation between the score obtained on an energy
knowledge quiz and the homeowner’s overall electricity consumption60. We
believe the demographics of the participants resemble the demographics of likely
home energy storage early adopters.

Electricity use and production data are downloaded from Pecan Street’s
Dataport website26. The data track electricity use and production in kilowatts at a
one-minute time resolution, allowing us to examine how energy storage could
respond to short-duration fluctuations in electricity demand and solar
production. The data collected from each household are screened according to
the following algorithm. First, the number of minutes over the year for which no
recorded value of electricity use or solar generation exists is calculated for each
household, and households with missing data points are excluded from the data

set (38 households in total). Second, the number of minutes for which the
recorded value of electricity use is equal to zero is calculated for each of the
households, and households with greater than 1,440min (one cumulative day
over the year) of electricity use equal to zero are excluded from the data set
(22 households in total). Finally, we generate time series plots showing the
minute-by-minute level of electricity demand and solar generation measured
from each of the remaining households over 2014. We examine each of these
plots visually, and eliminate an additional 13 households from the data set on the
basis of anomalous solar generation or electricity consumption behaviour.

After the screening process is complete, the verified data set contains
residential electricity use and solar generation data for 99 households, a sufficient
sample to examine the expected impact of home energy storage. The data set is
organized into data files that can be queried and then entered into the
optimization program that is used to plan the operation of home battery energy
storage. Summary statistics for each of the 99 homes from which data were
collected for this study are provided in Supplementary Table 1.

Energy storage operational management. We model home energy storage
operation using two different methods: a ‘target zero’ approach where the battery
does not have information about the future level of solar generation or electricity
demand and seeks to reduce the power flows between the household and the grid
to zero without regard for how its present actions might affect future reliance on
the utility; and a ‘minimize power’ approach where the battery system has perfect
information about the future level of electricity demand and solar generation over
the day, and plans its operation to minimize the magnitude of power flows
between the home and the utility grid over the entire day. The details of each of
these operational models are provided in the following sections.

‘Target zero’ operational model. The ‘target zero’ model for operational
management of home energy storage considers variables defined over three sets:
H : {1,2, . . . , 99}, representing the numerical identifier of the household where the
energy storage system is operating; d : {1,2, . . . , 365}, representing the day of the
year; and m: {1,2, . . . , 1440}, representing the minute of the day.

The model considers an energy storage device with a rated power P rated, a
rated energy capacity Erated, and a roundtrip efficiency ηrt. P rated and Erated are
selected to correspond to the specifications announced for Tesla’s ‘Powerwall’
home battery system for daily cycle applications: P rated = 3.3 kW, Erated = 7 kWh
(ref. 3). We assume a roundtrip a.c.–a.c. efficiency ηrt = 85% based on the 92%
d.c.–d.c. efficiency announced for the Powerwall and an assumed d.c.–a.c.
converter efficiency of 96%3,49,61,62.

The model steps from one minute of the year to the next, and uses the
following algorithm to decide the level of battery power. First, the target battery
power for household H during the day of the year d and the minute of the day m
is calculated as the instantaneous net power demand of the household during the
current minute, which is equal to the measured level of electricity use
Puse(H , d , m) minus the measured level of electricity generation Pgen(H , d , m) as
given in equation (1). The parameters Puse(H , d , m) and Pgen(H , d , m) come
from the home electricity data set discussed in the previous section. Second, the
target power is compared with the rated power of the battery system. If the target
power exceeds the rated power, then the magnitude of the target power is
reduced to the rated power level. Third, the level of stored energy at the end of
the current minute as a result of the applied target power is calculated. If the level
of stored energy violates the battery system’s limits, then the battery power during
the minute is set equal to zero. Otherwise, the battery power during the minute is
set equal to the target power level.
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This control logic is defined in equation (2). Positive values of Pbat(H , d , m)

indicate discharging while negative values indicate charging. The relationship
between the applied battery power and the level of stored energy during minute
m is defined by equations (3)–(6). Equation (3) estimates the instantaneous
amount of stored energy as a function of the initial energy stored at the
beginning of the day, Ebat,i(H , d), and the change in the amount of energy stored
during each prior minute of the day, 1Ebat(H , d , m). Equation (4) defines
Ebat,i(H , d). The initial amount of energy stored at the beginning of the first day
of the year is set equal to one half the system’s rated energy capacity. For
subsequent days, it is set equal to the amount of energy stored at the end of the
prior day. Equation (5) defines 1Ebat(H , d , m) as a function of the amount of
power applied to the battery. The constant 1t represents the duration of the
one-minute time step, and is set equal to (1/60) to integrate the kilowatt power
flow to/from the battery into kilowatt hours of energy. The constant κ represents
the energy losses during charging and discharging, and is defined in equation (6).
When the battery is discharging, more energy is extracted from the storage device
than is delivered to the grid, so κ is equal to 1/√η rt and greater than 1. When
the battery is charging, less energy enters the storage device than is extracted
from the grid, so κ is equal to √η rt and less than 1. Put together, the values
defined for κ in equation (6) set the net roundtrip energy storage efficiency to be
equal to ηrt and equally impose energy losses on charging and discharging.
Previous work has used a similar formulation to model storage energy losses58,63.

Ptarget(H ,d ,m)=Puse(H ,d ,m)−Pgen(H ,d ,m) (1)

Pbat(H ,d ,m)

=


min(Ptarget(H ,d ,m),Prated) if Ptarget(H ,d ,m)>0 (net consumer)

and 0≤Ebat(H ,d ,m)
max(Ptarget(H ,d ,m),−Prated) if Ptarget(H ,d ,m)<0 (net producer)

and Ebat(H ,d ,m)≤Erated

0 Otherwise

(2)

Ebat(H ,d ,m)=Ebat,i(H ,d)+
m∑
µ=1

1Ebat(H ,d ,µ) (3)

Ebat,i(H ,d)=
{
Erated/2 if d=1
Ebat(H ,d−1,m=1,440) if d 6=1 (4)

1Ebat(H ,d ,m)=−Pbat(H ,d ,m)κ1t (5)

κ=

{
1/√ηrt if Pbat(H ,d ,m)>0 (discharging)
√
ηrt if Pbat(H ,d ,m)<0 (charging) (6)

The control logic is applied using a for loop, which steps from one minute to
the next and assigns the battery power during minute m according to
equation (2). Sample input parameters and results from the operational model are
provided in Supplementary Figs 2–5.

‘Minimize power’ operational model. Like the ‘target zero’ model, the ‘minimize
power’ model considers variables defined over three sets: H : {1,2, . . . , 99},
representing the numerical identifier of the household where the energy storage
system is operating; d : {1,2, . . . , 365}, representing the day of the year; and
m: {1,2, . . . , 1440}, representing the minute of the day. A nonlinear optimization
program is used to plan the operation of home energy storage.

The decision variable for the optimization program is the level of battery
power Pbat(H , d , m) during each minute m of operating day d for household H ,
with negative values of Pbat(H , d , m) indicating charging and positive values
indicating discharging.

The objective of the optimization program is to minimize the magnitude of
power flows between a household and the grid by scheduling the battery charging
and discharging power over the day. Thus, we define the objective function to be
minimized as the sum of the squares of the net power flow between household H
and the grid during each minute m of day d , as given in equation (7). The net
power flow during each minute is equal to the measured level of electricity use
Puse(H , d , m), minus the measured level of electricity generation Pgen(H , d , m),
minus the battery power decision variable Pbat(H , d , m). The optimization
program is executed separately for each household H and each day d to minimize
each household’s interaction with the utility during each day of the year.

fObj(H ,d)=
1,440∑
m=1

(Puse(H ,d ,m)−Pgen(H ,d ,m)−Pbat(H ,d ,m))2 (7)

An important constraint on the battery system’s operation is that the
instantaneous amount of energy stored in the battery system must be within its
rated energy storage capacity, Erated. We impose an equality constraint within the
optimization program to define a dependent variable Ebat(H , d , m), which
represents the amount of energy stored in the battery at the end of minute m.
The relationship between the decision variable Pbat(H , d , m) and the dependent
variable Ebat(H , d , m) is defined as given in equations (3)–(6) discussed in the
previous section. As equation (6) has a conditional definition based on the sign of
the decision variable Pbat(H , d , m), it must be defined within the optimization
program using either an integer variable or a smooth functional approximation of
the discontinuous conditional constraint so that the solver can traverse the
solution space. We approximate equation (6) using the smooth, continuous
hyperbolic tangent function given in equation (8). Supplementary Fig. 1
compares equation (6) and (8).

κ≈

(
1
2

(
1
√
ηrt
+
√
ηrt

)
−

1
2

(
1
√
ηrt
−
√
ηrt

)
tanh(−50Pbat(H ,d ,m))

)
(8)

Within the optimization program, the battery power Pbat(H , d , m) and the
amount of energy stored in the battery Ebat(H , d , m) are constrained according to
the technical limits of the energy storage system. The magnitude of the battery
power is constrained to be less than or equal to the rated power capacity P rated

according to equation (9). The amount of energy stored is constrained to be
greater than or equal to zero and less than or equal to the rated battery energy
capacity Erated according to equation (10).

−Prated≤Pbat(H ,d ,m)≤Prated (9)

0≤Ebat(H ,d ,m)≤Erated (10)

We implement the optimization using the General Algebraic Modeling
System (GAMS)64. Within GAMS, the interior point nonlinear optimization
solver is used65.

The values of the parameters Puse(H , d , m), Pgen(H , d , m), P rated, Erated and ηrt
are passed to GAMS using the R programming package gdxrrw66. The parameters
Puse(H , d , m) and Pgen(H , d , m) come from the data set discussed in the previous
section. The parameters P rated and Erated are selected to correspond to the
specifications announced for Tesla’s Powerwall home battery system for daily
cycle applications: P rated = 3.3 kW, Erated = 7 kWh. We assume a roundtrip a.c.–a.c.
efficiency ηrt = 85% based on the 92% d.c.–d.c. efficiency announced for the
Powerwall and an assumed d.c.–a.c. inverter efficiency of 96%3,49,61,62.

R is used to obtain and store the solution to the optimization program
computed by GAMS. Sample input parameters and results for the optimization
program are provided in Supplementary Figs 2–5. We solve the optimization
program over the set of all households H in parallel. For each household, the
optimization problem is solved for each of the 365 days of the year d in series.

Calculation of power demand and energy consumption impacts. Once the
charge–discharge pattern of home energy storage has been calculated for each
day of 2014 for each of the 99 households in our data set, we can calculate the
impact that home energy storage would have on electrical power demand and
annual energy consumption.

The aggregate power demand with no storage PNS
grid(d , m) is calculated by

summing the electricity use and solar generation measured from each household
H according to equation (11). Likewise, the aggregate power demand with
storage PS

grid(d , m) is calculated according to equation (12). The calculated values
of PNS

grid(d , m) and PS
grid(d , m) are illustrated in Fig. 2.

PNS
grid(d ,m)=

99∑
H=1

Puse(H ,d ,m)−Pgen(H ,d ,m) (11)

PS
grid(d ,m)=

99∑
H=1

Puse(H ,d ,m)−Pgen(H ,d ,m)−Pbat(H ,d ,m) (12)

As residential electricity customers are typically billed for their kilowatt hour
consumption, we calculate the impact that the addition of home energy storage
would have on annual energy consumption for each of the households in our
data set. The change in net energy consumption over the year for each household
1Econs(H ) from the addition of home energy storage is calculated by integrating
the flow of power in and out of the storage device according to equation (13),
where 1t is set equal to (1/60) to convert the kilowatt power flows in/out of the
battery during each minute m into kilowatt hours of energy. Note that a negative
sign is added to the summation because positive values of Pbat indicate
discharging and negative values indicate charging.

1Econs(H)=
365∑
d=1

1,440∑
m=1

−Pbat(H ,d ,m)1t (13)
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Figure 3 illustrates the change in energy consumption from the addition of
home energy storage for each of the 99 households in the data set. The mean
additional energy consumption is calculated by taking the average of 1E(H ) over
all H , and a 95% confidence interval for the mean is calculated using a Student’s
t-test with 98 degrees of freedom.

Calculation of economic impacts. To assess the impact that adding energy
storage would have on the annual cost of service under different electricity tariffs,
we first calculate the monthly energy consumption from the grid and energy
injection to the grid for each of the 99 households in our data set with and
without energy storage added. Then, we create custom functions using the R
programming package that calculate the annual cost of service as a function of
monthly consumption and production for each of the 14 utility tariffs identified
in Table 167. While some of the tariffs charge a fixed US cent per kilowatt hour
rate for energy consumed and energy produced, most of the utility tariffs include
volumetric tiered charges, seasonal peak charges, or other subtleties that would be
difficult to compactly summarize here. We refer the reader to the utility tariffs
cited in the references and identified in Table 127–48. We use the custom R
functions to calculate the annual cost of service for each of the 99 households in
our data set with and without energy storage, and then calculate the annual
benefit from energy storage as the difference between the cost of service with no
energy storage installed and the cost of service with energy storage installed. The
annual benefit for each of the 99 households under each of the utility tariffs
considered is illustrated in Supplementary Figs 14–27.

Once the average annual benefit from the addition of energy storage
is calculated for each one of the utility tariffs considered and for both storage
operational modes considered, we calculate the present value of the energy storage
system assuming a ten-year lifetime, a 10% discount rate, and a 2.5% inflation
rate3,68. These assumptions result in a present worth factor of 7.17, as given
in equation (14). We multiply this present worth factor by each average annual
benefit in Table 1 and then divide by the base case energy capacity Erated = 7 kWh
to obtain the present value in US dollars per kilowatt hour for each utility tariff.

PWfactor=

10∑
y=1

(1+0.025)y−0.5

(1+0.10)y−0.5
=7.17 (14)

Marginal emissions data and estimation of emissions impacts. To calculate the
emissions impact of adding home energy storage to households with existing
solar panels, it is important to consider which generating units would respond to
a change in electricity demand at the particular times when energy storage
charges and discharges, because those generators might have different emissions.

Electricity generators are scheduled by the grid operator according to their
marginal operating cost, with the least costly generators dispatched first to
minimize overall production costs. As a rule of thumb, wind, solar, hydroelectric
and nuclear generation are dispatched first, followed by coal, and then natural gas
generation. The precise order that generators are dispatched depends on a
number of factors, such as their individual efficiency, fuel price, maintenance
requirements, electricity transmission constraints, and other factors.

To estimate the emissions associated with the marginal change in electricity
demand caused by home energy storage, we use marginal emissions factors
calculated for the Texas electricity system from US Environmental Protection
Agency Continuous Emissions Monitoring System (CEMS) data51,52. These data
estimate the change in CO2, SO2 and NOx emissions associated with a change in
electricity demand at 5% quantiles of fossil generation online. These data show
that when the total fossil generation online is at its minimum, the marginal CO2

and SO2 rates are at their maximum because more of the generators responding
to a marginal change in electricity generation are coal steam units. Likewise,
when the total fossil generation online is at its maximum, the marginal NOx rate
is at its maximum because more of the generators responding to a marginal
change in electricity demand are natural gas combustion turbines. The data are
available online from the Carnegie Mellon Center for Climate and Energy
Decision Making, and provided in Supplementary Fig. 2852. We estimate hourly
marginal emissions factors by comparing the recorded hourly level of fossil
generation over 2014 in Texas to the marginal emission factors calculated for
various levels of fossil generation and interpolating linearly. The hourly marginal
emissions factors are illustrated in Supplementary Figs 29–31.

Once hourly marginal emissions factors for CO2, SO2 and NOx have been
estimated, we calculate the annual emissions impact of adding home energy
storage to households with existing solar panels according to equations (15)–(17),
where MEF(h) is the marginal emissions factor in kilograms per kilowatt hour at
hour h, Pbat(H , d , m) is the battery power for household H on day d at minute m
in the corresponding hour h, and 1t is set equal to (1/60) to convert the kilowatt
power flow in and out of the battery system into kilowatt hours.

1CO2(H)=
365∑
d=1

24∑
h=1

∑
m∈h

−Pbat(H ,d ,m)1tMEFCO2 (h) (15)

1SO2(H)=
365∑
d=1

24∑
h=1

∑
m∈h

−Pbat(H ,d ,m)1tMEFSO2 (h) (16)

1NOx(H)=
365∑
d=1

24∑
h=1

∑
m∈h

−Pbat(H ,d ,m)1tMEFNOx (h) (17)

The result of equations (15)–(17) is an estimate of the annual change in CO2,
SO2 and NOx emissions in kilograms caused by the addition of home energy
storage. Note that no emissions credit is given for grid energy consumption offset
by the solar panels because our objective is to analyse the impact of adding
energy storage to a household with existing solar panels. The emissions impact of
home energy storage for each household in our sample is shown in Fig. 4. The
mean emissions impact is calculated by taking the average of the 1CO2(H ),
1SO2(H ) and 1NOx(H ) over each of the 99 households in our sample H . We
calculate a 95% confidence interval on the population mean using a Student’s
t-test with 98 degrees of freedom.

Data availability. To calculate the results presented in this paper, we draw on the
database of household electricity use and production available through Pecan
Street’s Dataport website26. Supplementary Table 1 provides the unique data
identifiers and summary statistics for each of the 99 households considered in
this study. The marginal emissions factors data used to calculate the emissions
impacts presented in Fig. 4 are available online from the Carnegie Mellon Center
for Climate and Energy Decision Making51,52. Additionally, the US Environmental
Protection Agency Continuous Emissions Monitoring System (CEMS) data
originally used to calculate marginal emissions factors are available online
through the Air Markets Program Data website69. Any intermediate data not
available from the sources described above, and not included in this article
or its Supplementary Information, are available from the authors
on request.
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